EXAM SETS & NUMBERS (PART 2: INTEGERS AND MODULAR ARITHMETIC) January 30, 2025, 8:30am-10:30am, Exam Hall 4, T13-X9.

Write your name on every sheet of paper that you intend to hand in.

Please provide complete arguments for each of your answers.

You may use a simple (not programmable) calculator during the exam.

This exam consists of 3 questions. You can score up to 6 points for each question, and you obtain 2 points for free.

In this way you will score in total between 2 and 20 points.

- (1) In this exercise we consider the Euclidean algorithm in a rather special case, namely for numbers of the form $10^n 1$.
 - (a) [2 points]. Assume we have integers n > 0, m > 0, q > 0 and $r \ge 0$ satisfying n = qm + r. By looking at the difference $(10^n 1) (10^r 1)$, show that one can write

$$10^n - 1 = Q \cdot (10^m - 1) + 10^r - 1,$$

for some integer Q.

- (b) [2 points]. In a situation as in (a), show that the equality $gcd(10^n 1, 10^m 1) = gcd(10^m 1, 10^r 1)$ holds.
- (c) [2 points]. Use (b) to conclude that

$$\gcd(10^n - 1, 10^m - 1) = 10^{\gcd(n,m)} - 1.$$

- (2) For $k \in \mathbb{Z}_{\geq 1}$ consider the numbers $m_k := (121^k 64^k)/57$.
 - (a) [2 points]. Show that $m_k \in \mathbb{Z}$, for every $k \geq 0$.
 - (b) [2 points]. Explain why no $k \ge 0$ exists such that m_k is a prime number.
 - (c) [2 points]. Show that k exists such that $30012025|m_k$. You may use that $30012025 = 5^2 \cdot 643 \cdot 1867$ (factorization into prime numbers).
- (3) This is an exercise about units modulo p^3 , where p is a prime number.
 - (a) [2 point]. Show that the inverse of $\overline{1+p} \in (\mathbb{Z}/p^3\mathbb{Z})^{\times}$ equals $\overline{1-p+p^2}$.
 - (b) [2 points]. Solve the system $\begin{cases} x + \overline{p}y &= \overline{a} \\ \overline{p}x + y &= \overline{b} \end{cases} \text{ for } x, y \in \mathbb{Z}/p^3\mathbb{Z} \text{ in terms}$ of $\overline{a}, \overline{b}$.
 - (c) [2 points]. Let $\bar{a} \in (\mathbb{Z}/p^3\mathbb{Z})^{\times}$ be arbitrary. Show that $n \in \mathbb{Z}_{\geq 0}$ exists such that $\bar{a}^{p-1} = \overline{1+np}$.

If you are only retaking the numbers part this side is all you need to complete, otherwise please turn over for part 1 on sets and do that part on a DIFFERENT piece of paper.